Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry.
نویسندگان
چکیده
Protein-based hydrogels have emerged as promising alternatives to synthetic hydrogels for biomedical applications, owing to the precise control of structure and function enabled by protein engineering. Nevertheless, strategies for assembling 3D molecular networks that carry the biological information encoded in full-length proteins remain underdeveloped. Here we present a robust protein gelation strategy based on a pair of genetically encoded reactive partners, SpyTag and SpyCatcher, that spontaneously form covalent isopeptide linkages under physiological conditions. The resulting "network of Spies" may be designed to include cell-adhesion ligands, matrix metalloproteinase-1 cleavage sites, and full-length globular proteins [mCherry and leukemia inhibitory factor (LIF)]. The LIF network was used to encapsulate mouse embryonic stem cells; the encapsulated cells remained pluripotent in the absence of added LIF. These results illustrate a versatile strategy for the creation of information-rich biomaterials.
منابع مشابه
Controlling macromolecular topology with genetically encoded SpyTag-SpyCatcher chemistry.
Control of molecular topology constitutes a fundamental challenge in macromolecular chemistry. Here we describe the synthesis and characterization of artificial elastin-like proteins (ELPs) with unconventional nonlinear topologies including circular, tadpole, star, and H-shaped proteins using genetically encoded SpyTag-SpyCatcher chemistry. SpyTag is a short polypeptide that binds its protein p...
متن کاملStructural analysis and optimization of the covalent association between SpyCatcher and a peptide Tag.
Peptide tagging is a key strategy for observing and isolating proteins. However, the interactions of proteins with peptides are nearly all rapidly reversible. Proteins tagged with the peptide SpyTag form an irreversible covalent bond to the SpyCatcher protein via a spontaneous isopeptide linkage, thereby offering a genetically encoded way to create peptide interactions that resist force and har...
متن کاملGenetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins In Vivo.
Membrane proteins are the main gatekeepers of cellular state, especially in neurons, serving either to maintain homeostasis or instruct response to synaptic input or other external signals. Visualization of membrane protein localization and trafficking in live cells facilitates understanding the molecular basis of cellular dynamics. We describe here a method for specifically labeling the plasma...
متن کاملSecrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher.
SpyTag is a short peptide that forms an isopeptide bond upon encountering its protein partner SpyCatcher. This covalent peptide interaction is a simple and powerful tool for bioconjugation and extending what protein architectures are accessible. Here we review the origin and mechanism of SpyTag/SpyCatcher, focusing on recent innovative applications. Ligation of targeting-antibody with antigen p...
متن کاملPlug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization
Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 31 شماره
صفحات -
تاریخ انتشار 2014